21 research outputs found

    Estimation Techniques for State of Charge in Battery Management Systems on Board of Hybrid Electric Vehicles Implemented in a Real-Time MATLAB/SIMULINK Environment

    Get PDF
    The battery state-of-charge estimation is essential in automotive industry for a successful marketing of both electric and hybrid electric vehicles. Furthermore, the state-of-charge of a battery is a critical condition parameter for battery management system. In this research work we share from the experience accumulated in control systems applications field some preliminary results, especially in modeling and state estimation techniques, very useful for state-of-charge estimation of the rechargeable batteries with different chemistries. We investigate the design and the effectiveness of three nonlinear state-of-charge estimators implemented in a real-time MATLAB environment for a particular Li-Ion battery, such as an Unscented Kalman Filter, Particle filter, and a nonlinear observer. Finally, the target to be accomplished is to find the most suitable estimator in terms of performance accuracy and robustness

    Application of multivariable and intelligent control strategies for improving plasma characteristics in reactive ion etching

    Get PDF
    Reactive Ion Etching (RIE) is a critical technology for modern VLSI circuit fabrication and is used at many stages of the manufacturing process. Several real-time control strategies such as Proportional-Integral ( PI ) self-tuning, Linear Quadratic Gaussian ( LQG ), stochastic adaptive control, Deurocontrol, robust and hierarchical control based on both linear and nonlinear models of the Plasma Generation Subsystem (PGS) are developed to improve plasma characteristics in the Reactive Ion Etching process. The proposed approaches result in superior accuracy and performance when compared to results that are available in the literature. The identification process (prediction error approach) to determine linear Auto Regressive Moving Average ( ARMA ) models of the PGS is based on the computationally efficient recursive least squared ( RLS ) procedure. This is an alternative to the use of Kalman filter that is based on state estimation. The massively parallel processing, nonlinear mapping, and self-learning abilities of neural networks are exploited in the development of intelligent control systems. Neurocontrollers enhance RIE manufacturability and may be used for process optimization, control, and diagnosis. A hierarchical real-time control strategy is developed that automatically selects during each specific operating interval the best real-time control strategy for tracking the dc self bias voltage and fluorine concentration set points. It is shown that the proposed methodology results in higher performance and is computationally more efficient than that using a single control strategy that is dependent on a range of operating conditions

    NEURAL NETWORKS ARCHITECTURES FOR MODELING AND SIMULATION OF THE ECONOMY SYSTEM DYNAMICS

    Get PDF
    This research work investigates the possibility to apply several neural network architectures for simulation and prediction of the dynamic behavior of the complex economic processes. Therefore we will explore different neural networks architectures to build several neural models of the complex dynamic economy system. In future work we will use these architectures to be trained by well-known training algorithms, such as Levenberg-Marquardt back-propagation error and Radial Basic Function (RBF), to compare their results and to decide at the end, which one is the best among the different applications from the economy field. The results presented in this work are based on the experience accumulated by the authors in the field of identification, modeling and control of the industrial and economic processes, namely chemical, HVAC, automotive industry and satellites constellation. The neural networks are strongly recommended for the highly nonlinear processes for which an analytic description is almost impossible. It is well known that the single-index economic models and selection of leading indicator variables are normally based on linear regression methods. Moreover, in statisti- cal modeling of the business cycle, it has been well established that cycles are asymmetric; therefore it is doubtful that linear models can adequately describe them. With recent development in nonlinear time series analysis, several authors have begun to examine the forecasting properties of nonlinear models in economics. Probably the largest share of economic appli- cations of nonlinear models can be found in the field of prediction of time series capital markets. Furthermore recently, the neural network architectures use financial variables to forecast industrial production by estimating a nonlinear, non- parametric nearest-neighbor regression model, and are very useful for fault detection, diagnosis and isolation ( FDDI) of the models fault in the control systems.The simulation results reveal a high capability of the neural networks to capture more accurate the nonlinear dynamics behavior of the process and to yield high performance, comparable to the Kalman filters techniques and all other control strategies developed in literature. The nonlinear mapping and self-learning abilities of neural networks have been motivating factors for development of intelligent contol strategies. The neural networks approach is very interesting because don`t need the linear model of the process that means time consuming and increasing the risk to reduce the accuracy in capturing the appropriate dynamics of the process.Dynamic Systems, Kalman Filers, Neural Networks Architectures, ARMA Models, Estimation, Neural-Models, Neural-Control Strategy, Inverse Neural-Control Strategy, MIMO Control Strategies. Market-Oriented Economy

    Fault Detection, Diagnosis, and Isolation Strategy in Li-Ion Battery Management Systems of HEVs Using 1-D Wavelet Signal Analysis

    Get PDF
    Nowadays, the wavelet transformation and the 1-D wavelet technique provide valuable tools for signal processing, design, and analysis, in a wide range of control systems industrial applications, audio image and video compression, signal denoising, interpolation, image zooming, texture analysis, time-scale features extraction, multimedia, electrocardiogram signals analysis, and financial prediction. Based on this awareness of the vast applicability of 1-D wavelet in signal processing applications as a feature extraction tool, this paper aims to take advantage of its ability to extract different patterns from signal data sets collected from healthy and faulty input-output signals. It is beneficial for developing various techniques, such as coding, signal processing (denoising, filtering, reconstruction), prediction, diagnosis, detection and isolation of defects. The proposed case study intends to extend the applicability of these techniques to detect the failures that occur in the battery management control system, such as sensor failures to measure the current, voltage and temperature inside an HEV rechargeable battery, as an alternative to Kalman filtering estimation techniques. The MATLAB simulation results conducted on a MATLAB R2020a software platform demonstrate the effectiveness of the proposed scheme in terms of detection accuracy, computation time, and robustness against measurement uncertainty

    Investigations of Using an Intelligent ANFIS Modeling Approach for a Li-Ion Battery in MATLAB Implementation: Case Study

    Get PDF
    This research paper will propose an incentive topic to investigate the accuracy of an adaptive neuro-fuzzy modeling approach of lithium-ion (Li-ion) batteries used in hybrid electric vehicles and electric vehicles. Based on this adaptive neuro-fuzzy inference system (ANFIS) modeling approach, we will show its effectiveness and suitability for modeling the nonlinear dynamics of any process or control system. This new ANFIS modeling approach improves the original nonlinear battery model and an alternative linear autoregressive exogenous input (ARX) polynomial model. The alternative ARX is generated using the least square errors estimation method and is preferred for its simplicity and faster implementation since it uses typical functions from the MATLAB system identification toolbox. The ARX and ANFIS models’ effectiveness is proved by many simulations conducted on attractive MATLAB R2021b and Simulink environments. The simulation results reveal a high model accuracy in battery state of charge (SOC) and terminal voltage. An accurate battery model has a crucial impact on building a very precise adaptive extended Kalman filter (AEKF) SOC estimator. It is considered an appropriate case study of a third-order resistor-capacitor equivalent circuit model (3RC ECM) SAFT-type 6 Ah 11 V nominal voltage of Li-ion battery for simulation purposes

    Investigations of Different Approaches for Controlling the Speed of an Electric Motor with Nonlinear Dynamics Powered by a Li-ion battery - Case study

    Get PDF
    This research investigated different nonlinear models, state estimation techniques and control strategies applied to rechargeable Li-ion batteries and electric motors powered and adapted to these batteries. The finality of these investigations was achieved by finding the most suitable design approach for the real-time implementation of the most advanced state estimators based on intelligent neural networks and neural control strategies. For performance comparison purposes, was chosen as case study an accurate and robust EKF state of charge (SOC) estimator built on a simple second-order RC equivalent circuit model (2RC ECM) accurate enough to accomplish the main goal. An intelligent nonlinear autoregressive with exogenous input (NARX) Shallow Neural Network (SSN) estimator was developed to estimate the battery SOC, predict the terminal voltage, and map the nonlinear open circuit voltage (OCV) battery characteristic curve as a function of SOC. Focusing on nonlinear modeling and linearization techniques, such as partial state feedback linearization, for “proof concept” and simulations purposes in the case study, a third order nonlinear model for a DC motor (DCM) drive was selected. It is a valuable research support suitable to analyze the performance of state feedback linearization, system singularities, internal and zero dynamics, and solving reference tracking problems

    Real Time Design and Implementation of State of Charge Estimators for a Rechargeable Lithium-Ion Cobalt Battery with Applicability in HEVs/EVs—A Comparative Study

    No full text
    Estimating the state of charge (SOC) of Li-ion batteries is an essential task of battery management systems for hybrid and electric vehicles. Encouraged by some preliminary results from the control systems field, the goal of this work is to design and implement in a friendly real-time MATLAB simulation environment two Li-ion battery SOC estimators, using as a case study a rechargeable battery of 5.4 Ah cobalt lithium-ion type. The choice of cobalt Li-ion battery model is motivated by its promising potential for future developments in the HEV/EVs applications. The model validation is performed using the software package ADVISOR 3.2, widely spread in the automotive industry. Rigorous performance analysis of both SOC estimators is done in terms of speed convergence, estimation accuracy and robustness, based on the MATLAB simulation results. The particularity of this research work is given by the results of its comprehensive and exciting comparative study that successfully achieves all the goals proposed by the research objectives. In this scientific research study, a practical MATLAB/Simscape battery model is adopted and validated based on the results obtained from three different driving cycles tests and is in accordance with the required specifications. In the new modelling version, it is a simple and accurate model, easy to implement in real-time and offers beneficial support for the design and MATLAB implementation of both SOC estimators. Also, the adaptive extended Kalman filter SOC estimation performance is excellent and comparable to those presented in the state-of-the-art SOC estimation methods analysis
    corecore